

DRAINAGE DESIGN MANAGEMENT SYSTEM FOR WINDOWS VERSION 5.3.0

TUTORIAL # 8 DEVELOPING HEC-1 ROUTING DATA USING GIS

DEVELOPING HEC-1 ROUTING DATA USING GIS

TABLE OF CONTENTS

No.	Section	Page
1.0	Introduction	3
2.0	CREATING THE ROUTING DATA IN GIS	3
3.0	Update the Routing Data in the HEC-1 Model Using "Routes.Shp"	7
4.0	UPDATE THE HEC-1 MODEL NETWORK	8
5.0	RUN THE DRAFT HEC-1 MODEL	10
6.0	Run the Final HEC-1 Model	10
7.0	VIEW FLOW SUMMARY	11
8.0	BACKUP PROJECT	12

DEVELOPING A HEC-1 ROUTING DATA USING GIS

DATE UPDATED: JUNE 30, 2016

1.0 Introduction

This tutorial is the same as **TUTORIAL #2** (**NEW HEC-1 MODEL FROM GIS**) except that this tutorial employs the routing data that have been assembled in GIS. This tutorial describes how a routing shapefile ("Routes.shp") is created and how the required attribute fields are defined and populated. The routing shapefile is a polyline feature which connects the drainage outlet of an upstream sub-basin to the drainage outlet of the immediate sub-basin downstream. The routing paths define the main flow paths for the drainage runoff.

This tutorial will revisit **Step 16** of **TUTORIAL #2**, and instead of manually entering the four (4) routing data for Route **ID**'s **010005**, **010010**, **010105**, and **010110** for the Kinematic Wave method, the routing data are read directly and imported from "Routes.shp" table (i.e., "Routes.dbf").

2.0 Creating the Routing Data in GIS

To create the "Routes.shp" (i.e., the bold yellow green polylines in **Figure 1**), we need to ensure that the polyline features for the routing flow paths comprise the main flow paths from the upstream sub-basin drainage outlet to the downstream drainage outlet of the receiving sub-basin. These drainage outlets (represented by the point features on the map) are also called flow concentration points.

From **TUTORIAL #2**, the routing polylines (shown in **FIGURE 1**) are described in the following table:

No.	RouteID	U/S Drainage Outlet ID	D/S Drainage Outlet ID	
1	010005	010005	010010	
2	010105	010105 010105		
3	010110	010110	010010	
4	010010	010010	010015	

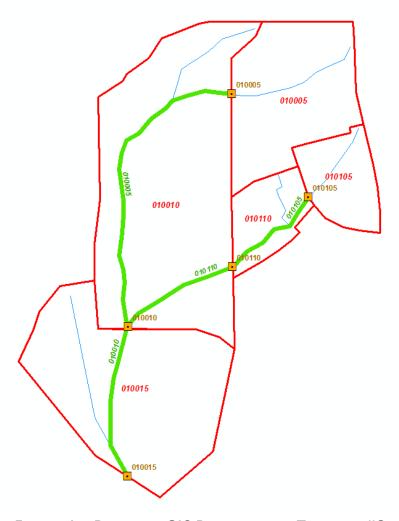
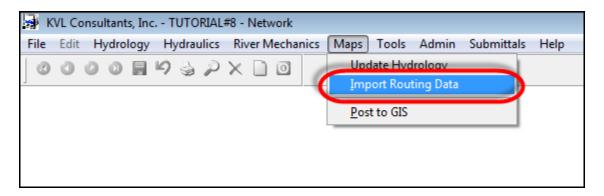
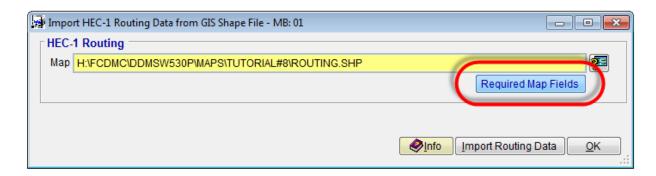
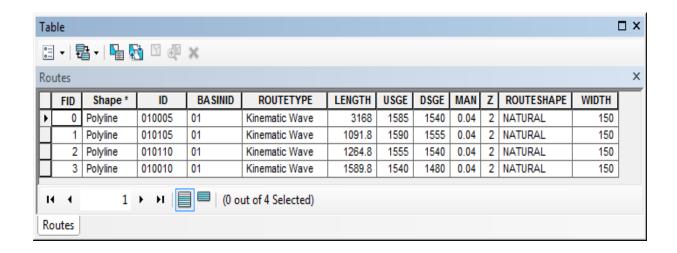




FIGURE 1 – RELEVANT GIS DATASETS FOR TUTORIAL #8

2.1 Data Specification for Required Attributes

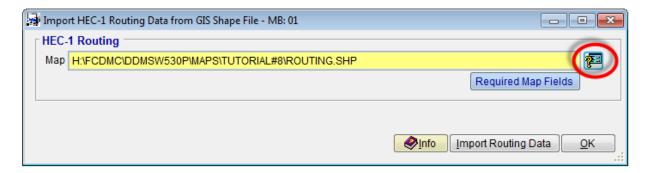
In GIS, the associated table ("Routes.dbf) that defines the required attributes of individual route polylines specific to the routing method used are identified and described in the Required Mapping Fields table (Maps > Import Routing Data > Required Map Fields).

In this tutorial, which employs *Kinematic Wave* method for channel flow routing, the required attribute field names, data types and formats are provided in the said table. Specific to *Kinematic Wave* method, the table below lists the required attributes to be created and populated in the creation of the "*Routes.shp*" table:

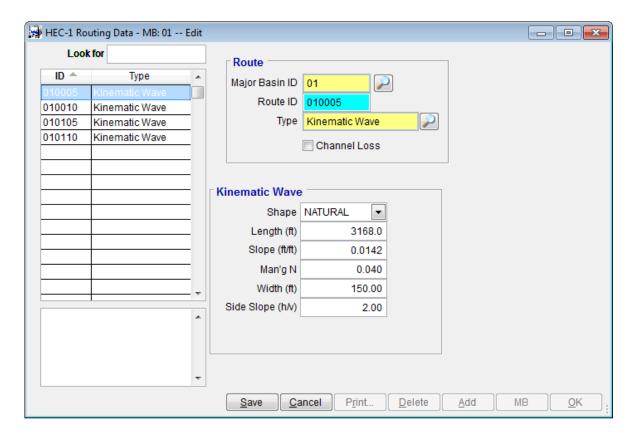

Field Name	Туре	Description	
BASINID	Character 2	Major Basin ID (All)	
ID	Character 6	Routing ID (All)	
ROUTETYPE	Character 20	Routing Type (Kinematic Wave)	
LENGTH	Numeric 8.1	Routing length in feet (All)	
USGE	Numeric 8.2	Upstream ground elevation (All)	
DSGE	Numeric 8.2	Downstream ground elevation (All)	
MAN	Numeric 5.3	Manning's n for channel (All)	
ROUTESHAPE	Character 10	Natural, Channel, Pipe, Box or Roadway	
WIDTH	Numeric 7.2	Channel bottom width in feet	
Z	Numeric 5.2	Channel side slopes (Z Hor:1 Ver)	
DIA	Numeric 5.2	Pipe diameter in inches	

2.2 Populating the Required Attribute Data

After the naming convention of attribute fields as well as their respective data types and formats are known, the attribute field data are created following those specifications. As an example and for illustration purposes, Route ID "010005" has the following field attribute data:


Field Name	Туре	Values	Description
ID	Character 6	010005	The data is a string with a maximum of 6 characters.
BASINID	Character 2	01	The data is a string with a maximum of 2 characters
ROUTETYPE	Character 20	Kinematic Wave	The data is a string with a maximum of 20 characters. (Other ROUTETYPE options are Normal Depth and Muskingum-Cunge)
LENGTH	Numeric 8.1	3168.0	The data is numeric with 1-decimal point precision.
USGE	Numeric 8.2	1585.00	The data is numeric with 2-decimal point precision.
DSGE	Numeric 8.2	1540.00	The data is numeric with 2-decimal point precision.
MAN	Numeric 5.3	0.040	The data is numeric with 3-point decimal point precision
ROUTESHAPE	Character 10	NATURAL	The data is a string with a maximum of 10 characters. (Other <i>ROUTESHAPE</i> options are: <i>PIPE, BOX, CHANNEL,</i> and <i>ROADWAY</i>).
WIDTH	Numeric 7.2	150.00	The data is numeric with 2-decimal point precision.
z	Numeric 5.2	2.00	The data is numeric with 2-decimal point precision.
DIA	Numeric 5.2	-	The data is numeric with 2-decimal point precision. This attribute field was not included because all the ROUTESHAPE used in the model are all NATURAL .

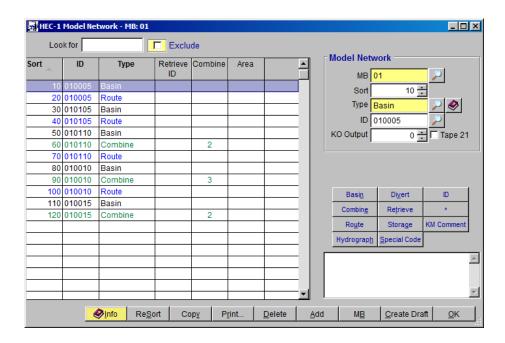
The completed attribute table for the "Routes.shp" is shown below.


3.0 UPDATE THE ROUTING DATA IN THE HEC-1 MODEL USING "ROUTES.SHP"

To use the routing data assembled in GIS, open the **IMPORT HEC-1 ROUTING DATA FROM GIS SHAPE FILE** form (*Maps* → *Import Routing Data*). Click the button located on the right side of the **HEC-1 Routing Map** textbox and navigate to the location of the "*Routes.shp*" or the flow routing shapefile that was created.

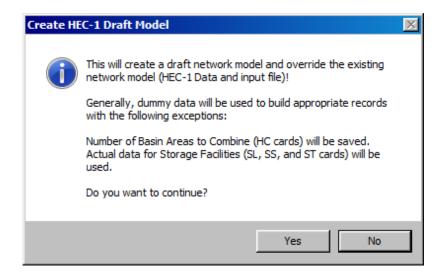
Once the file has been located and selected, click **OK** to close the **OPEN DIALOG BOX**.

On the **IMPORT HEC-1 ROUTING DATA FROM GIS SHAPE FILE** form, click the *Import Routing Data* button. Click *Yes* to continue. Further, click *Yes* to close the **WARNING** form. Click *OK* to close the gridded **HEC-1 ROUTING DATA** form.

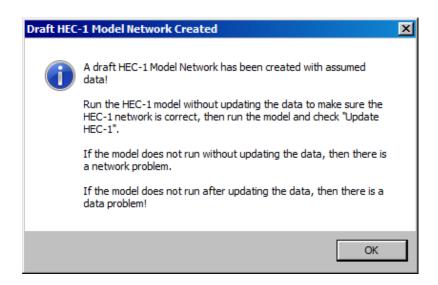


To validate if the imported routing data are correct, go through each individual data item by selecting the *Route ID*.

Click **OK** to close the **HEC-1 ROUTING DATA** form.


4.0 UPDATE THE HEC-1 MODEL NETWORK

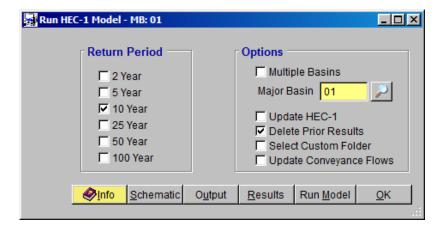
Select *Hydrology* → *HEC-1* → *Network* to open the **HEC-1 MODEL NETWORK** form.



Since the naming convention used for the flow routing data (Route *ID*s) have not changed, the original **HEC-1 MODEL NETWORK** should be correct. If changes were made on the Route *ID*s, the **HEC-1 MODEL NETWORK** should be updated to reflect the correct Route *ID*s.

To create a draft model using the updated routing data, click the "Create Draft" button at the bottom of the form. Click Yes to continue.

Click **OK** to close the **DRAFT HEC-1 MODEL NETWORK CREATED** form.

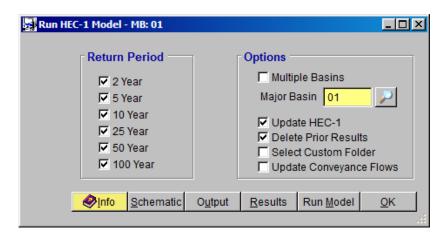


After exiting from the previous form, the program shows automatically the Draft "HEC-1 Model" file. Close the **Text Editor** after viewing file. Click "OK" to close the **HEC-1 MODEL NETWORK** form

5.0 Run the Draft HEC-1 Model

Select *Hydrology* → *HEC-1* → *Model* to access the HEC-1 model.

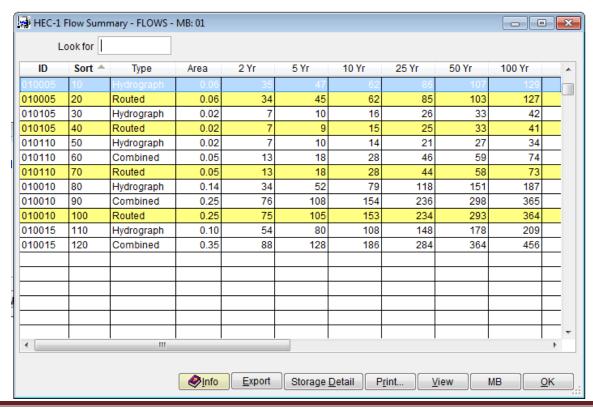
Check the '10 Year' Return Period and the 'Delete Prior Results' option. Uncheck all other return periods and options. Click 'Save' to save the entered preferences.

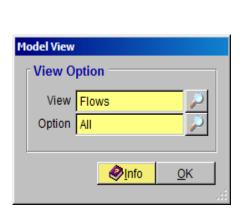


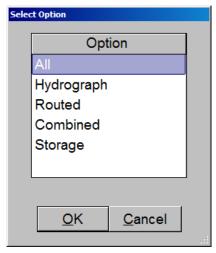
Click 'Run Model' to run the **Draft HEC-1 Model**. If the model runs without issues, it means that the HEC-1 Model Network that was built for the project is fine.

6.0 Run the Final HEC-1 Model

To run the model for all the return periods, click all the textboxes for the six return periods, and

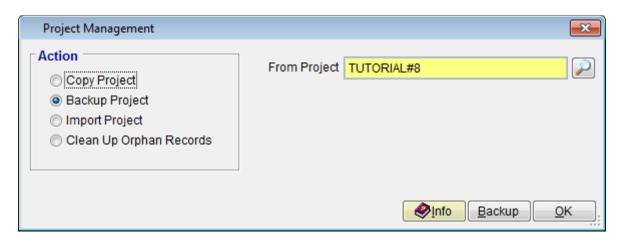

then check the "Update HEC-1" and "Delete Prior Results" options. Click "Save" to save the execution settings and run the model by clicking the "Run Model" button.

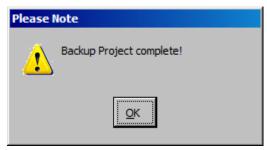

If the model runs correctly, it means that the HEC-1 network and data are fine. The results can be viewed by clicking 'Results'. A full output file can be viewed with the 'Output' button, selecting the specific output file to view and pressing 'OK'. The 100-Year Schematic can be viewed by pressing the 'Schematic' button. Press 'OK' to close the RUN HEC-1 MODEL form.


7.0 VIEW FLOW SUMMARY

Select *Hydrology* → *HEC-1* → *Flow Summary* to access the HEC-1 model results. Click *'View'* to view other summary items.


TUTORIAL #8 - DEVELOPING HEC-1 ROUTING DATA USING GIS





8.0 BACKUP PROJECT

Select *File* Project Management to access the PROJECT MANAGEMENT form. Select 'Backup Project' as the Action and TUTORIAL#8 as the project (use the adjacent button to select). Click the 'Backup' button to create a backup copy of the project. Select the directory where the backup file should go and finally click 'OK' after a directory has been chosen. Click "Yes" to confirm.

This ends this tutorial.